Azumaya Categories
نویسندگان
چکیده
We define the notions of Azumaya category and Brauer group in category theory enriched over some very general base category V. We prove the equivalence of various definitions, in particular in terms of separable categories or progenerating bimodules. When V is the category of modules over a commutative ring R with unit, we recapture the classical notions of Azumaya algebra and Brauer group and provide an alternative, purely categorical treatment of those theories. But our theory applies as well to the cases of topological, metric or Banach modules, to the sheaves of such structures or graded such structures, and many other examples.
منابع مشابه
Azumaya Monads and Comonads
The definition of Azumaya algebras over commutative rings R requires the tensor product of modules over R and the twist map for the tensor product of any two R-modules. Similar constructions are available in braided monoidal categories, and Azumaya algebras were defined in these settings. Here, we introduce Azumaya monads on any category A by considering a monad (F,m, e) on A endowed with a dis...
متن کاملOn Azumaya Galois Extensions and Skew Group Rings
Two characterizations of an Azumaya Galois extension of a ring are given in terms of the Azumaya skew group ring of the Galois group over the extension and a Galois extension of a ring with a special Galois system is determined by the trace of the Galois group.
متن کاملOn the Azumaya Locus of Some Crossed Products
Given D a commutative Noetherian domain and G a finite group acting faithfully on D as automorphisms of D, we describe the Azumaya locus of the crossed product D ∗ G and relate it with the singular locus of DG. To achieve this we will impose some basic homological conditions on D and on D ∗ G. Also, we give necessary and suficient conditions for a crossed product to be Azumaya.
متن کاملVertex Algebras, Mirror Symmetry, And D-Branes: The Case Of Complex Tori
A vertex algebra is an algebraic counterpart of a two-dimensional conformal field theory. We give a new definition of a vertex algebra which includes chiral algebras as a special case, but allows for fields which are neither meromorphic nor anti-meromorphic. To any complex torus equipped with a flat Kähler metric and a closed 2-form we associate an N = 2 superconformal vertex algebra ( N = 2 SC...
متن کاملQuasi-elementary H-Azumaya Algebras Arising from Generalized (Anti) Yetter-Drinfeld Modules
Let H be a Hopf algebra with bijective antipode, α, β ∈ AutHopf (H) and M a finite dimensional (α, β)-Yetter-Drinfeld module. We prove that End(M) endowed with certain structures becomes an H-Azumaya algebra, and the set of H-Azumaya algebras of this type is a subgroup of BQ(k,H), the Brauer group of H .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Categorical Structures
دوره 10 شماره
صفحات -
تاریخ انتشار 2002